
Regents Chemistry: Dr. Shanzer

Practice Packet

Chapter 9: Chemical Bonding

Chapter 9: Bonding Vocabulary

- **Molecule** a COVALENTLY bonded substance; can be atoms of the same element (Ex: diatomic elements/molecules); molecular substance = covalent substance
- Compound a substance composed of two or more atoms from different elements CHEMICALLY bonded together
- Bond forces of attraction that hold atoms together in a molecule or compound
- Octet Rule atoms bond together in order to have 8 electrons in their valence shell
- **Exothermic** energy is RELEASED as a product of a chemical reaction
- Endothermic energy is CONSUMED as a product of a chemical reaction
- Ionic Bond chemical bond involving the TRANSFER of electrons between a metal and nonmetal atom (metals lose, nonmetals gain); electronegativity difference between elements typically GREATER than 1.7
- Covalent Bond chemical bond involving the SHARING of electrons between two nonmetal atoms; electronegativity difference between elements typically LESS than 1.7
- Oxidation number the "charge" an element has within a compound
- Polyatomic ions atoms of two or more elements chemically bonded together and having a NFT CHARGE
- **Polar molecule** a covalent molecule with an unequal sharing of electrons; contains atoms of two different nonmetal elements (all covalent compounds that are NOT diatoms)
- Nonpolar molecules a molecule with symmetrical/equal sharing of electrons
- Intermolecular forces (IMF's) weak forces between molecules that hold the molecules to one another; not actually chemical bonds

Chemical Bonding

Video Lesson 91.

.....

Objectives

- Describe the 2 major types of chemical bonds in terms of electrons.
- Describe the properties of ionic and covalent bonding

•

Chemical Bonds

- Chemical bond is the force between atoms or ions
- Atoms will gain, lose, or share electrons to achieve the same electron configurations as the noble gases

•

Bond Energy – Bond Formation

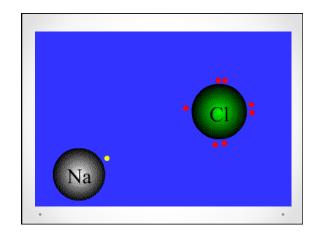
- Bond formation is spontaneous
 - o Energy is release when bonds are formed
 - EXOTHERMIC
 - Atoms go from high energy to lower energy
 - Creating bonds creates stability

$$A + B \rightarrow AB + Energy$$
 (heat) (560 kJ)

Bond Energy – Bond Breaking

Breaking bonds is not spontaneous

 Energy is required/absorbed/consume
 ENDOTHERMIC


BC + energy
$$\rightarrow$$
 B + C
(heat)
(600 kJ)

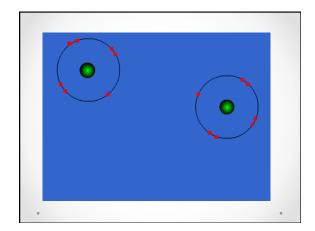
Bond Types

- Ionic Bonds
- o Bonds that involve IONS
- Covalent Bonds
 - o Bonds between nonmetals
 - o Molecules
- Metallic Bonds
 - o Bonds that hold metals together.

Ionic Bonds

- Bond formed between ions
 - o Metals bonded to nonmetals
 - o Compound that contain polyatmoic ions
- Involves <u>a transfer of electrons</u>
- Electronegativity difference typically greater than 1.7 (subtraction)
 - o The greater the difference the more ionic character

Properties of Ionic Compounds

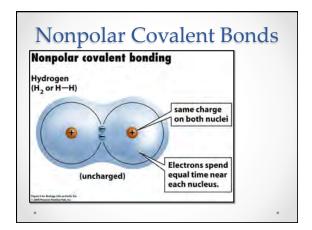

- Very strong bond
- High melting points and high boiling points
- Hard
- Form crystal lattice shape (regular geometric pattern)
- Electrolytes
 - o Can conduct electricity in solution (aq)

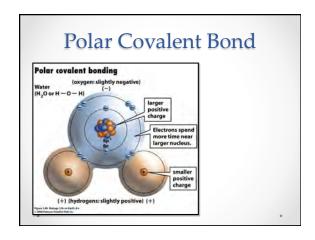
Crystalline Structure

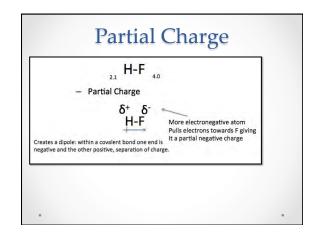
Covalent Bonds

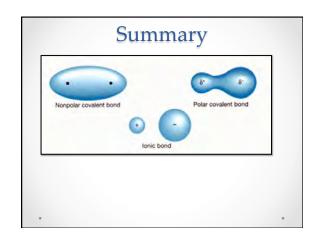
- Found in molecular substances.
- · Involves a sharing of electron pairs.
- Nonmetals bonded to nonmetals
 - o Or diatomic elements
 - $\bullet \,\, \mathsf{Br}_2 \, \mathsf{I}_2 \, \mathsf{N}_2 \, \mathsf{CI}_2 \, \mathsf{H}_2 \, \mathsf{O}_2 \, \mathsf{F}_2$
- Similar electronegativities

.



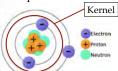

Properties of Covalent Bonds


- · Weaker bonds than ionic bonds
- Low melting and low boiling points
- Do not form electrolytes
- Typically soft


•

Types of Covalent Bonds Nonpolar Covalent Bonds Form between atoms with the same electronegativity Electrons are shared equally H₂ Polar Covalent Bonds Form between nonmetals with different electronegativity Electrons are shared unequally

Lewis Dot Diagrams


Chemistry 200 Video Lesson 9.2

Objective:

How do we show the arrangement of electrons for Ionic and Molecular substances using Lewis Dot Diagrams? (Lewis Structures)

<u>Valence electrons</u> – electrons in the outermost shell of an atom or ion

- · Establish chemical characteristics of elements
- The only electrons shown in Lewis electron dot structures
- Group # indicates valence e- except for Helium

Lewis Structures or Dot Diagrams

Atoms

- Determine valence electron number
- · Write the symbol for the element
- Place a dot on each side of the symbol for each electron

Nitrogen → 5 valence e-

Ions

- Cations(+) lose valence e- & Anions(-) gain valence e-
- Place [] around the symbol & indicate the charge:

Creating Lewis Dot Diagrams for molecules

Ionic

- create dot diagrams for each ion and put them together
- · use subscripts if more than one cation or anion

Lewis dot diagram for $MgCl_2$ $Mg: + Mg^{2+}+2:Ci:$ Mg: + Ci: $Mg^{2+}+2:Ci:$

Molecular

Step 1

Obtain the sum of the <u>valence</u> electrons from all of the atoms. Do not worry about keeping track of which electrons come from which atoms. It is the <u>total</u> number of valence electrons that is important. Be attentive to the charge if applicable.

•

Step 2

Use one pair of electrons to form a bond btwn each pair of bound atoms. For convenience, a line (instead of a pair of dots) is generally used to indicate each pair of bonding electrons. The atom w/ the smallest electronegativity is usually in the middle. Oxygen tends not to be the central atom. Hydrogen is <u>never</u> the central atom because it only forms one bond.

Step 3

Arrange the remaining electrons to satisfy the <u>duet</u> rule for hydrogen & the <u>octet</u> rule for each of the other atoms. If each atom does not have an octet of electrons around it & there are still electrons to be assigned, consider a multiple bond.

Draw a Lewis Dot structure for CH₃Cl

1. Total number of valence e for the atoms in the compound.

2. Put most electronegative element in the center & connect all atoms to it using bond lines, one line for each e pair.

3. Complete diagram using the Octet & Duet Rules

0

Draw a Lewis dot diagram for O₂

Each oxygen atom has 6 valence e^- , therefore O_2 has a total of 12 valence e^- .

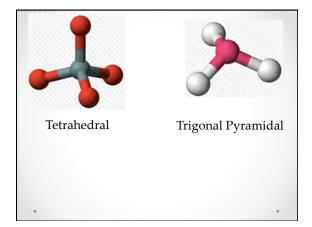
- 1. O O This leaves 10 e left to use
- 2. There are a total of 12 valence e which is all that can be used. Apply Octet rule
- Now we have an 3. Octet around each oxygen atom

ALWAYS COUNT BONDS & ELECTRON PAIRS WHEN FINISHED!!! PLEASE

Molecular Shapes & Polarity

Chemistry 200 Video Lesson 9.3

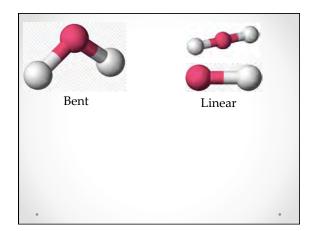
Video Lesson S


Objective:

How do we determine the shape and polarity of a molecule?

$\underline{\textbf{Shapes of Molecules}}_{Pair Repulsion} \text{ (VSEPR -Valence Shell Electron)}$

VSEPR Theory is just a fancy model used to identify the shape of a molecule in 3 dimensions. The theory is based on the fact that atoms AND unbonded (lone) pairs of electrons found on the CENTRAL atom repel each other. As a result, the 3 dimensional shape of a molecule is simply the result of electron clouds getting as far away from each other as possible while still being bonded to a central atom. This should make sense since electrons are negative & repel each other


Name of Shape	Number of atoms	Number of unshared pairs	Shape	Examples
•	bonded to	of electrons on		
	the central atom	the central		
Tetrahedral		atom 0	H—C—H	CH ₄ CH ₃ I CCl ₄
Trigonal Pyramidal	3	1	H—Ä—H H	$\mathrm{NH_3} \\ \mathrm{PH_3}$

Name of Shape	Number of atoms bonded to the central atom	Number of unshared pairs of electrons on the central atom	Shape	Examples
Bent	2	2	H,Ö,H	H ₂ O H ₂ S
Linear	2	0	;o=c=o;	CO ₂

* H-F is linear

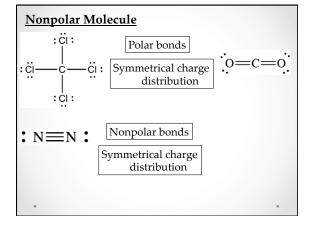
.

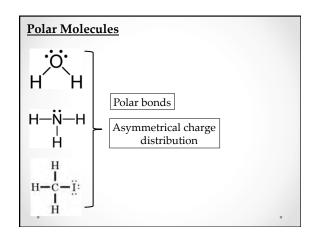
Polarity within a Molecule

<u>Polar Molecule</u>: A molecule that has an overall slight (+) & (-) side. For a molecule to be polar, it must meet 2 important criteria:

- 1. It must contain polar covalent bonds **AND**
- 2. It must have an asymmetrical (uneven) charge distribution

Failing either of these (or both) means the molecule is NONPOLAR


Nonpolar Molecule: A molecule that lacks an overall


(+) &(-) side. Nonpolar molecules are created when
a molecule lacks polar bonds or has a symmetrical
(even) charge distribution

Determining Polarity w/in a Molecule

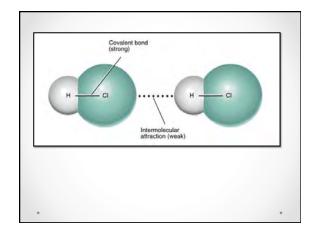
- <u>Ionic molecules</u> are always polar
- look at the shape & central atom of the molecule
- the shape MUST permit a net displacement of charge (one end positive & one end negative) to be polar
- if all polar bonds w/in a molecule are **equal**, the molecule is nonpolar

•

Intermolecular Forces

Video Lesson 9.4

Objectives

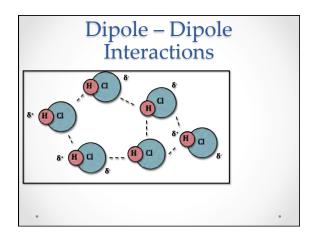

• Evaluate the strength and type of intermolecular forces of attraction.

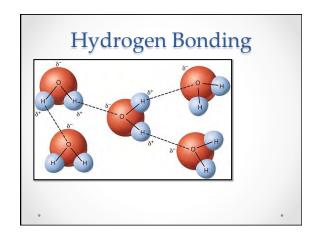
.

Intermolecular Forces (IMF's)

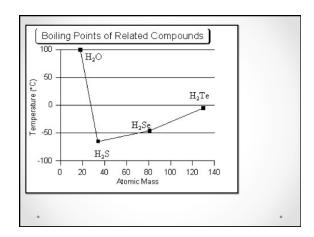
- o Only in covalent molecules
- Weak forces that act BETWEEN molecules
- o Only exist in Gas and liquid phase
- Much weaker than chemical bonds
- o IMF's ARE NOT BONDS!!!

•




Types of Intermolecular Forces

- Van der Waal's Attraction
 - o Weakest of All IMF's
 - o Nonpolar molecules only
 - о Н-Н
- Dipole Dipole Interaction
 - o Two poles positive and negative
 - Hydrogen Bonding
 - Strongest
 - HFON


.

Van der Waals Attraction Temporary dipoles

Sketch Notes

Video Lesson 9.1: Bonding

Ionic Bondbetween a Metal and Non-Metal(M + NM)Covalent Bondbetween a Non-Metal and Non-Metal(NM + NM)Metallic Bondbetween a Metal and Metal(M+ M)

Determine if the elements in the following compounds are metals or non-metals. Describe the type of bonding that occurs in the compound.

Compound	Element 1 (metal or non-metal?)	Element 2 (metal or non-metal?)	Bond Type
NO ₂	N = non-metal	0 = non-metal	covalent
NaCl			
SO ₂			
PO ₄ 3-			
MgBr ₂			
CaO			
H ₂ O			
K ₂ O			
Cu-Zn alloy			
02			
CuCl ₂			
NO ₂ -			
TiO ₂			
HF			
Rb ₂ S			
Au-Ag mixture			
Fe ₂ O ₃			

10. LiBr

Types of Chemical Bonds:

Classify the following compounds as ionic (metal + nonmetal), covalent (nonmetal + nonmetal) or both (compound containing a polyatomic ion).

1. CaCl₂ 11. MgO 12. NH₄Cl 2. CO₂ 3. H_2O 13. HCl 4. BaSO₄ 14. KI 5. K₂O 15. NaOH 6. NaF $16. NO_2$ 7. Na₂CO₃ _____ 17. AlPO₄ 8. CH₄ 18. $FeCl_3$ 9. SO_3 19. P_2O_5

.0	1.7	.4	0
Ionic	Pola	ir- ilent bond	Non-polar covalent bond
00%	50%	5%	0%

 $20. N_2 O_3$

Bonding between	More Electronegative element and value	Less Electronegative element and value	Difference in electronegativity	Bond Type
Sulfur and Hydrogen		8	11	7. —
Sulfur and cesium				. , , , , , ,
Chlorine and bromine	E =			11
Calcium and chlorine				
Oxygen and hydrogen				, in many
Nitrogen and hydrogen				4
Iodine and iodine				
Copper and sulfur		1 4		
Hydrogen and fluorine				
Carbon and oxygen				A

 1. Two molecules of HBr collide and then form H₂ and Br₂. During the collision, the bonds in the HBr molecules are 1) broken as energy is absorbed 2) broken as energy is released 3) formed as energy is absorbed 4) formed as energy is release 2. Given the balanced equation representing a reaction: 	7. A molecular compound is formed when a chemical reaction occurs between atoms of 1) chlorine and sodium 2) chlorine and yttrium 3) oxygen and hydrogen 4) oxygen and magnesium 8. Which compound has both ionic and covalent bonding? 1) CaCO ₃ 2) CH ₂ Cl ₂
 Energy is absorbed as bonds are broken. Energy is released as bonds are formed. Energy is released as bonds are broken. Energy is released as bonds are formed. What occurs as two atoms of fluorine combine to become a molecule of fluorine? A bond is formed as energy is absorbed. A bond is formed as energy is released. A bond is broken as energy is released. A bond is broken as energy is released. Which formulas represent one ionic compound and one molecular compound? N₂ and SO₂ Cl₂ and H₂S BaCl₂ and N₂O₄ NaOH and BaSO₄ Which element forms an ionic compound when it reacts with lithium? K 2) Fe 3) Kr 4) Br Which type of substance can conduct electricity in the liquid phase but <i>not</i> in the solid phase? ionic compound molecular compound molecular compound metallic element nonmetallic element 	10. Which characteristic is a property of molecular substances? 1) good heat conductivity 2) good electrical conductivity 3) low melting point 4) high melting point 11. Which type of bond is found between atoms of solid cobalt? 1) nonpolar covalent 2) polar covalent 3) metallic 4) ionic 12. A solid substance is an excellent conductor of electricity. The chemical bonds in this substance are most likely 1) ionic, because the valence electrons are shared between atoms 2) ionic, because the valence electrons are mobile 3) metallic, because the valence electrons are stationary 4) metallic, because the valence electrons are mobile

Video Lesson 9.2: Lewis Structures

Lewis Dot Diagrams for Molecular substances

Step 1

Obtain the sum of the <u>valence</u> electrons from all of the atoms. Do not worry about keeping track of which electrons come from which atoms. It is the <u>total</u> number of valence electrons that is important. Be attentive to the charge if applicable.

Step 2

Use one pair of electrons to form a bond btwn each pair of bound atoms. For convenience, a line (instead of a pair of dots) is generally used to indicate each pair of bonding electrons. The atom w/ the smallest electronegativity is usually in the middle. Oxygen tends not to be the central atom. Hydrogen is **never** the central atom because it only forms one bond.

Step 3

Arrange the remaining electrons to satisfy the <u>duet</u> rule for hydrogen & the <u>octet</u> rule for each of the other atoms. If each atom does not have an octet of electrons around it & there are still electrons to be assigned, consider a multiple bond.

Draw Lewis Dot Diagrams for the following substances:

CH ₄	CH ₃ CI	NH ₃	H ₂ O
HBr	F_2	\mathbf{O}_2	N_2
CO_2	C_2H_2	CCl ₄	PCl_3

 PO_4^{-3} ClO_3^{-1} NH_4^{+1}

NaF Li_2S MgCl_2 Al_2O_3

Video Lesson 9.3: Molecular Shapes and Polarity

Read This!

The VSEPR (Valence Shell Electron Pair Repulsion) Theory helps predict the shapes of molecules and is based on the premise that electrons around a central atom repel each other. Electron domains are areas of high electron density such as bonds (single, double or triple) and lone-pairs of electrons. In simple terms VSEPR means that all electron bonding domains and electron nonbonding domains around a central atom need to be positioned as far apart as possible in three-dimensional space.

- 1. VSEPR theory specifies "valence shell" electrons. Explain why these are the most critical electrons for determining molecular shape.
- 2. In the VSEPR theory, what is repelling what?

Based on the information in the Read This! section, sketch one of the molecular shapes shown below in each of the boxes provided in Model 1.

Linear Trigonal planar Molecular Shapes

Tetrahedral Pyramidal Bent

109.5°

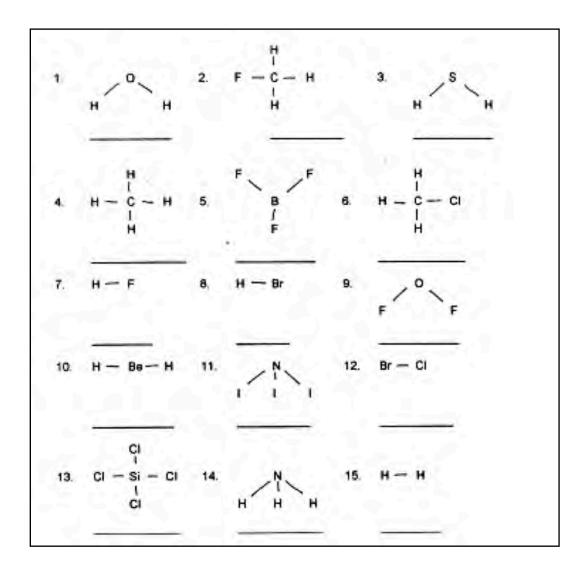
104.5°

Chemical Bonding

Indicate the number of valence electrons for each. Write the correct Lewis electron dot structure for each.

F	0	К
		# valence electrons =
F ⁻¹	O ²⁻	Al ³⁺
# valence electrons =	# valence electrons =	# valence electrons =
HF	CaCl ₂	NH ₃
# valence electrons =	# valence electrons =	# valence electrons =
SO ₄ ²⁻	со	Li ₂ O
# valence electrons =	# valence electrons =	# valence electrons =

NF ₃	PO ₄ ³⁻	CBr ₄
# valence electrons =	# valence electrons =	# valence electrons =


Why?

When you draw a Lewis structure for a molecule on paper, you are making a two-dimensional representation of the atoms. In reality however, molecules are not flat—they are *three*-dimensional. The true shape of a molecule is important because it determines many physical and chemical properties for the substance. In this activity you will learn how to predict molecular shapes.

Model 1 - Lewis Structures

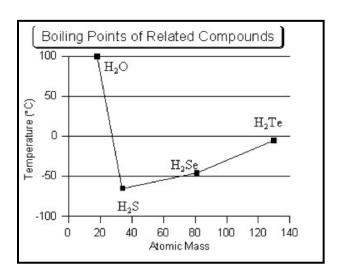
Lewis Structures 1 H2CO ::	H ₂ CO 3 electron domains (3 bonding, 0 nonbonding)	3-D Molecular Shape
H—C—H 2 ReF₂ ○ F—R—F •	BeF ₂ 2 electron domains (2 bonding, 0 nonbonding)	
3 OH, H H—C—H	CH ₄ 4 electron domains (4 bonding, 0 nonbonding)	
4. NH ₃ H H—N—H 5. H ₂ 0	NH ₃ 4 electron domains (3 bonding, 1 nonbonding)	
© \$0-H I V. CO ₂ H Ö= <=Ö	H ₂ O 4 electron domains (2 bonding, 2 nonbonding)	
Lone pair = ••	CO ₂ 2 electron domains (2 bonding, 0 nonbonding)	

For each molecule below, identify their shape and determine if they are polar or nonpolar molecules.

Draw Lewis Dot Diagrams, determine the shape, molecular polarity and bond type for each of the following substances:

N ₂	HF	H ₂ O

CO ₂	H ₂ S	NH ₃
CH ₄	CH ₃ Cl	O_2
	-1	
PO ₄ -3	ClO ₃ -1	NH ₄ +1


<u>Video Lesson 9.4:</u> Intermolecular Forces

Intermolecular Forces of Attraction Summary

Van der Waal's Attraction	Dipole- Dipole Attraction	Hydrogen Bonds
(weak)	(medium)	(very strong)
 Weak attractions found between nonpolar molecules Temporary dipole due to asymmetrical distribution of electrons The electron cloud is always moving Examples H - H H:C:H H 	 Attraction between polar molecules that occur with oppositely charged regions of the neighboring molecule Examples CI—H 	 FON Very strong attraction between molecules where the hydrogen atom of one molecule is attracted to the F, O or N atom in another molecule Responsible for the high BP of water Examples

The graph on the right shows the boiling point of compounds of hydrogen and them members of group 16.

- 1. What is the electronegativity difference in each compound?
- 2. How can the differences in boiling point be explained?

Intramolecular Bonds

(within a molecule)

TYPES of SUBSTANCES

COVALENT BONDS

unequal sharing of electrons Formed by Polar

Bonds formed by the transfer

of electrons

IONIC BONDS

difference of more than 1.7

Generally have an EN

Generally compounds of

metals & nonmetals

- equal sharing of Formed by Nonpolar
 - electrons
- EN diff. of 0
- EN diff. btwn 0 & 1.7
- nonmetallic elements & compounds composed of Both kinds of covalent bonds are found in nonmetals.
- When properties of substances w/covalent bonds are studied they can be divided into 2 grps

Molecular Substances

 $\overline{\text{ex}}$: H₂O, H₂, HCl, CH₄, CH₃Cl At room temp. are gases, liquids or solids w/low M.P. Poor conductors always

METALLIC BONDS

- Bonds formed by the extreme mobility of electrons.
- A metal can be pictured as a collection of positive ions in a sea of mobile electrons
- Solids at room temp. except Hg.
- Good conductors as solids & liquids.
- Have luster
- $\overline{\text{Ex}}$: Cu, Fe, Hg, Na

high M.P. Poor conductors as

solids, good conductors in

aqueous soln.

Ex: NaCl, CuF2, Na2SO4

Hard, crystalline solide w/

Intermolecular Forces of Attraction

When one looks at the attraction that exists between molecules, they see that there are 3 different types:

Van der Waal's Attraction

(weak)

- Weak attractions found btwn nonpolar molecules or noble gases
- Temporary dipole due to asymmetrical distribution of the electrons.
- The electron cloud is always moving, (+) & (-) areas of the molecule
- Ex: H-H H-C-H H-C-H

Dipole-Diploe Attraction (dipoles are polar molecules) (medium)

molecules that occur w/
oppositely charged regions of
the neighboring molecules

the neighboring molecules

•
$$Ex$$
: $H - \vec{C}$: $H - \vec{C} - H$

H

E, S.

Hydrogen Bonds F.O.N.

(very strong)

- Very strong attraction btwn molecules where the Hydrogen atom of one molecule is attracted to the F, O or N atom in another molecule
- Responsible for the high B.P. of H_2O

1. The boiling points, at standard pressure, of four compounds are given in the table below.

Boiling Points of Four Compounds

Compound	Boiling Point (°C)
$\mathrm{H}_2\mathrm{O}$	100.0
$ m H_2S$	-59.6
$\mathrm{H_{2}Se}$	-41.3
$\mathrm{H}_{2}\mathrm{Te}$	-2.0

Which type of attraction can be used to explain the unusually high boiling point of H_2O ?

- 1) ionic bonding
- 2) hydrogen bonding
- 3) polar covalent bonding
- 4) nonpolar covalent bonding
- 2. Hydrogen bonding is a type of
 - 1) strong covalent bond
 - 2) weak ionic bond
 - 3) strong intermolecular force
 - 4) weak intermolecular force
- 3. In which liquid is hydrogen bonding strongest?
 - 1) HF(ℓ)
- 3) CH₄(ℓ)
- 2) $H_2(\ell)$
- 4) NH₃(ℓ)
- 4. Which characteristic of the compound C₅H₁₂ causes it to have a higher normal boiling point than C₂H₆?
 - 1) The distance between molecules of C₅H₁₂ is greater.
 - 2) The force of attraction between molecules of C_5 H_{12} is greater.
 - 3) C₅H₁₂ has a larger number of ionic bonds.
 - 4) C₅H₁₂ has a larger number of double bonds.

- 5. Which type of attraction results from the formation of weak momentary dipoles?
 - 1) ionic
 - 2) metallic
 - 3) molecule-ion
 - 4) van der Waals forces
- 6. Which statement explains why Br₂ is a liquid at STP and I₂ is a solid at STP?
 - 1) Molecules of Br₂ are polar, and molecules of I₂ are nonpolar.
 - 2) Molecules of I_2 are polar, and molecules of Br_2 are nonpolar.
 - 3) Molecules of Br₂ have stronger intermolecular forces than molecules of I₂.
 - 4) Molecules of I₂ have stronger intermolecular forces than molecules of Br₂.
- 7. Which statement explains why H₂O has a higher boiling point than N₂?
 - 1) H₂O has greater molar mass than N₂.
 - 2) H₂O has less molar mass than N₂.
 - 3) H₂O has stronger intermolecular forces then N₂.
 - 4) H₂O has weaker intermolecular forces than N₂.
- 8. The primary forces of attraction between water molecules in $H_2O(\ell)$ are
 - 1) ionic bonds
 - 2) hydrogen bonds
 - 3) molecule-ion attractions
 - 4) van der Waals forces

Bonding Review

1. Given the balanced equation representing
a reaction:

$$Cl_2 \rightarrow Cl + Cl$$

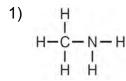
What occurs during this reaction?

- 1) A bond is broken as energy is absorbed.
- 2) A bond is broken as energy is released.
- 3) A bond is formed as energy is absorbed.
- 4) A bond is formed as energy is released.
 - 2. Which statement describes what occurs as two atoms of bromine combine to become a molecule of bromine?
 - Energy is absorbed as a bond is formed.
 - 2) Energy is absorbed as a bond is broken.
 - 3) Energy is released as a bond is formed.
 - Energy is released as a bond is broken.
 - 3. Which of these elements has an atom with the most stable outer electron configuration?
 - 1) Ne 2) Cl 3) Ca 4) Na
 - 4. When a sodium atom reacts with a chlorine atom to form a compound, the electron configurations of the ions forming the compound are the same as those in which noble gas atoms?
 - 1) krypton and neon
 - 2) krypton and argon
 - 3) neon and helium
 - 4) neon and argon
 - 5. Which element has an atom with the greatest attraction for electrons in a chemical bond?
 - 1) As
- 2) Bi
- 3) N
- 4) P
- 6. Based on electronegativity values, which type of elements tends to have the greatest attraction for electrons in a bond?
 - 1) metals
- 3) nonmetals
- 2) metalloids
- 4) noble gases

- 7. Which term indicates how strongly an atom attracts the electrons in a chemical bond?
 - 1) alkalinity
 - 2) atomic mass
 - 3) electronegativity
 - 4) activation energy
- 8. Which bond is *least* polar?
 - 1) As-Cl
- 3) P-CI
- 2) Bi-Cl
- 4) N-CI
- 9. Given the electron dot diagram:

The electrons in the bond between hydrogen and fluorine are more strongly attracted to the atom of

- 1) hydrogen, which has the higher electronegativity
- 2) fluorine, which has the higher electronegativity
- hydrogen, which has the lower electronegativity
- 4) fluorine, which has the lower electronegativity
 - 10. An ionic compound is formed when there is a reaction between the elements
 - 1) strontium and chlorine
 - 2) hydrogen and chlorine
 - 3) nitrogen and oxygen
 - 4) sulfur and oxygen
 - 11. Which formula represents an ionic compound?
 - 1) H₂
- 3) CH₃OH
- 2) CH₄
- 4) NH₄CI
- 12. Which Lewis electron-dot diagram correctly represents a hydroxide ion?
 - 1) [:O:H]
- ³⁾ [:ö::н]
- ²⁾ [:O:H:]
- 4) [:


20. What is the total number of electrons shared in the bonds between the two carbon atoms in a the molecule shown
below? H-C≡C-H
1) 6 2) 2 3) 3 4) 8 21. Which formula represents a molecular
compound? 1) Kr 3) N ₂ O ₄
2) LiOH 4) Nal 22. In which material are the particles
arranged in a regular geometric pattern?
1) CO₂(g) 3) H₂O(ℓ) 2) NaCl(aq) 4) C₁₂H₂₂O₁₁(s)
23. What is the maximum number of covalent bonds that a carbon atom can form?
1) 1 2) 2 3) 3 4) 4 24. Which type of bond is found between atoms of solid cobalt?
nonpolar covalent polar covalent
3) metallic 4) ionic
25. A solid substance is an excellent conductor of electricity. The chemical bonds in this substance are most likely
ionic, because the valence electrons are shared between atoms
ionic, because the valence electrons are mobile
3) metallic, because the valence electrons are stationary4) metallic, because the valence
electrons are mobile 26. Which substance contains metallic
— bonds? 1) Hg(ℓ) 3) NaCl(s) 2) H ₂ O(ℓ) 4) C ₆ H ₁₂ O ₆ (s)

27. A chemist performs the same tests on two homogeneous white crystalline solids, *A* and *B*. The results are shown in the table below.

	Solid A	Solid B
Melting Point	High, 801°C	Low, decomposes at 186°C
Solubility in H ₂ O (grams per 100.0 g H ₂ O at 0°C)	35.7	3.2
Electrical Conductivity (in aqueous solution)	Good conductor	Nonconductor

The results of these tests suggest that

- 1) both solids contain only ionic bonds
- 2) both solids contain only covalent bonds
- 3) solid A contains only covalent bonds and solid B contains only ionic bonds
- 4) solid A contains only ionic bonds and solid B contains only covalent bonds
- 28. Which formula represents a molecule having a nonpolar covalent bond?

4) H H-C-OH

- 29. The chemical bond between which two atoms is most polar?
 - 1) C-N
- 3) S-CI
- 2) H-H
- 4) Si-O
- 30. Which compound has hydrogen bonding between its molecules?
 - 1) CH₄
- 3) KH
- 2) CaH₂
- 4) NH₃
- 31. Which formula represents a nonpolar molecule containing polar covalent bonds?
 - 1) H₂O
- 3) NH₃
- 2) CCI₄
- 4) H₂
- 32. Which formula represents a polar molecule?
 - 1) H₂
- 3) CO₂
- 2) H₂O
- 4) CCL₄

- 33. Which formula represents a nonpolar molecule?
 - 1) HCI
- 3) NH₃
- 2) H₂O
- 4) CH₄
- 34. At STP, fluorine is a gas and bromine is a liquid because, compared to fluorine, bromine has
 - 1) stronger covalent bonds
 - 2) stronger intermolecular forces
 - 3) weaker covalent bonds
 - 4) weaker intermolecular forces
 - 35. The four single bonds of a carbon atom in CH₄ are directed toward the corners of a
 - 1) square
- 3) rectangle
- 2) tetrahedron
- 4) parallelogram

Base your answers to questions 36 and 37 on the information below.

Physical Properties of CF₄ and NH₃ at Standard Pressure

Compound	Melting Point (°C)	Boiling Point (°C)	Solubility in Water at 20.0°C
CF ₄	-183.6	-127.8	insoluble
NH ₃	-77.7	-33.3	soluble

- 36. In the space in your answer booklet, draw a Lewis electron-dot diagram for CF₄.
 - 37. State evidence that indicates NH₃ has stronger intermolecular forces than CF₄.

Base your answers to questions **38** and **39** on the information below.

In 1864, the Solvay process was developed to make soda ash. One step in the process is represented by the balanced equation below.

- →NaHCO₃ + NH₄Cl
 - 38. In the space draw a Lewis electron-dot diagram for the reactant containing nitrogen in the equation.
 - 39. Explain, in terms of electronegativity difference, why the bond between hydrogen and oxygen in a water molecule is more polar than the bond between hydrogen and nitrogen in an ammonia molecule.

40. Draw a Lewis electron-dot diagram for a molecule of phosphorus trichloride, PCI₃